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The well established model1–3 for studying the micro-bunching instability driven by lon-
gitudinal space charge in ultra-relativistic bunches in FEL-like beamlines can be identi-
fied as a time-discrete Vlasov model with general drift maps and Poisson type collective
kick maps. This model can in principle be solved exactly using the method of character-
istics (Perron-Frobenius operator method). Here we describe a higher order perturbative
approach based on the Frechet derivative of the Perron-Frobenius operator, and show
that is in principle suited to compute analytic approximations to the micro-bunching
gain functions.

1. Introduction

In linac driven high-gain FELs the generation of bunches with peak current sufficient

to support the necessary FEL-gain is typically achieved by creation of a moderately

short bunch at the electron source followed by several (typically 1 to 3) stages

of bunch-(length) compression interleaved with acceleration. Thereby the charge

density of the bunches can be kept acceptable at the lower energies so that emittance

blow up through space charge forces is manageable. Multistage compression is

often considered beneficial because it minimizes the heating of the bunch through

incoherent synchrotron radiation at higher energies as well as the absolute correlated

energy spread due to the E-chirp needed in the compression process.

However, as we will see, the beamlines, needed to (length)-compress† the

bunches, implement several mechanisms to amplify initially small inhomogeneities

of the phase-space densities (PSDs) into performance degrading substructures

(micro-bunches). We will refer to this effect as micro-bunching amplification, or

short as micro-bunching. In this paper we will restrict our study to longitudi-

nal 2-dimensional phase space. Since electrons in a linac quickly reach the ultra-

relativistic limit, the compression is often realized by firstly stamping the bunch

with a negative (≡ “nose-down”) correlation between the particle energy and the

longitudinal position inside the bunch through deliberately chirped RF accelerating

modules and secondly transporting the bunch through a magnetic chicane with pos-

∗vogtm@mail.desy.de
†We mention here (for the last time) that “bunch-compression” is in fact a sheared rotation in
longitudinal phase space which is fully symplectic and thus measure preserving.
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itive (≡ “higher energies pass quicker”) longitudinal dispersion (often referred to as

“R56”). The above procedure typically implies a beamline layout which consists of

“long” linac sections, and comparatively “short” chicanes. During passage through

the long linac sections various kinds of longitudinal collective intra-bunch effects

act on the bunch PSD, thereby potentially modifying the energy distribution of the

bunch in a way that depends on the charge distribution. The chicanes supply the

longitudinal dispersion and thus the mechanism for modifying the charge density

depending on the energy distribution. The most prominent collective effects in the

field of micro-bunching are longitudinal space charge (LSC ) which acts along the

complete beamline and coherent synchrotron radiation (CSR) which acts solely in

the chicanes. We note, however, that any longitudinal collective effect whose spec-

trum covers the range relevant for intra-bunch substructures can in principle drive

the conversion of a density modulation into an energy modulation, i.e. the first step

of the micro-bunching process. CSR is essentially an effect in 4-dim phase space

(longitudinal ⊗ radial) although an approximation via a an impedance in plain

longitudinal phase space exists and is well known4,5.

Here, we will neglect CSR and all synchrotron radiation effects, and restrict the

LSC effects to the long linac section, because by doing so we obtain a model that

is piece-wise exactly integrable. The dynamical system under study becomes

reducible to algebraic relations and integrals and thus allows for explicitly writing

down the phase flow as composition of explicitly computable maps, namely the flows

over the domains of integrability!

In addition to the above arguments it sometimes appears to helpful to divide

a real-live phenomenon (micro-bunching) into distinct self-contained aspects (the

gain models with various distinct drivers) and study their dynamics one at a time.

2. The Base Model

Our model is purely longitudinal (2-dim phase space) with self-consistent LSC but

without any synchrotron radiation effects, i.p. without CSR. We use Cartesian con-

jugate coordinates q := −cτ and p := Pz − P0 ≈ E − E0. ~z := (q, p)T, where τ is

the lag of the trajectory w.r.t. the reference trajectory (i.e. the head of the bunch

has positive q), c describes the clumsiness of the mksA (SI) system of units when

it comes to describe atomistic processes (c = 1 in atomistic units), Pz and E are

the trajectories longitudinal momentum and kinetic energy respectively and P0, E0

are the reference momentum and reference kinetic energy. We employ the ultra-

relativistic limit, β → 1, βγ → γ, γ ≫ 1 i.p. we neglect the longitudinal dispersion

(R56 := L/γ20) of all straight drift spaces L. This means, that given a characteristic

relative energy spread of ∆E := (E − E0)/E0, (E0 = γ0mc
2) we only transport

longitudinal structures l with

l ≪ L∆E

γ20
(1)

over sections of length L.
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The longitudinal PSD is Ψ(~z ) ≡ Ψ(q, p) with
∫

R2 Ψ(~z )d2z = 1, so that for

every measure able set A ⊂ R
2 the probability that any of the N particles in the

beam is in A is
∫

A Ψ(~z )d2z = P(A). The longitudinal configuration space density

is ρ(q) :=
∫

R
Ψ(q, p)dp so that the longitudinal charge density for a bunch of N

electrons is −eNρ. The ultra-relativistic limit implies that ρ(q) is frozen outside

the magnetic chicanes.

Our models includes a self-consistent (in the mean field approximation) LSC

with charge density as the source term in the Poisson equation. Therefore the

map ~M : ~zi 7→ ~zf = ~M(~zi) through the single bunch compression stage depends

on ρ and thus on Ψ. We denote the functional dependence by [·], so we write
~M [Ψ] : ~zi 7→ ~zf = ~M [Ψ](~zi). All maps in this model are symplectic automorphisms

of phase space and i.p., measure preserving. This implies that within the model the

evolution of the PSD is a time-discrete Vlasov evolution:

Ψf = Ψi ◦ ~M [Ψi]
−1 (2)

Following the discussion above and in Section 1 we formulate the basic model as

single bunch compressor stage := { (long) non-dispersive LinAcc + LSC } followed

by { (short) magnetic chicane }, i.e.
~M [Ψ] = ~Ddrift

magnetic chicane ◦ ~Kkick
cavities+LSC[Ψ] . (3)

The structure of the maps ~D and ~K is discussed in greater detail in the following

two subsections.

In the case of several single bunch compression stages, we iterate Ψm = Ψm−1 ◦
~Mm[Ψm−1]

−1.

The same base models is discussed in the contribution6 by Ph. Amstutz.

s1 s2
s

0

K o K lsc [ΨK =[Ψ ] ]cav
D = D chic

[Ψ ] = D o K [M Ψ ]

Single Bunch Compressor Stage

Fig. 1. The base model.

2.1. The (long) LinAcc/LSC Part K[Ψ]

As mentioned before we model this as a non-dispersive straight section so that ρ(q)

frozen. Then the transfer map is a kick map with a non-collective (RF-cavity) and

Poisson-type collective (LSC) component.
(

q

p

)

7→
(

q

p+ kcav(q) + kpoi[Ψ](q)

)

, (4)
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Ψf(q, p) = Ψi(q, p− kcav(q)− kpoi[Ψi](q)) . (5)

All kicks commute therefore the actual distribution of the RF cavities inside the

linac does not matter within the boundaries of our model. Moreover, since kicks

change only p (modify only the p-density) and since the Poisson-type kick function

kpoi depends only on Ψ via the q-density ρ (p-density integrated out), the LSC

kick only depends on the initial Ψi of the linac section under consideration. This

is explained in greater detail in6. Moreover, although the transverse dimensions

vary (betatron envelope) over the linac, the commutativity of kicks grants that an

averaged (along the linac beamline) Greens function 〈Gpoi〉 exists, so that

kpoi[Ψi](q) := Lk

∫

R2

〈Gpoi〉 (q, q′)Ψi(q
′, p′) dq′dp′ ≡ Lk

∫

R

〈Gpoi〉 (q, q′)ρi(q′) dq′ ,
(6)

where Lk is the length of the linac. For convenience we introduce the linear operator

Kpoi that maps the PSDs into the kick-functions by

(Kpoi Ψ)(q) := kpoi[Ψ](q) . (7)

We assume an axially symmetric transverse PSD. Several Greens functions for vari-

ous axially symmetric transverse shapes (uniform disk, delta-function, round Gaus-

sian) are discussed in6. The integral cavity kick function is given by kcav(q) =

h̃q + O(q2), where h̃ = hEref is the absolute rf-chirp due to the linac given the

relative (more familiar) rf-chirp h which makes sense, however, only for zero accel-

eration (Eref ≡ Ei ≡ Ef). If eV is the energy gain due to the vector sum amplitude

of the cavities in the linac, qφ is the distance of the the reference particle to the (vec-

tor sum) on-crest particle, and λrf is the (common) wavelength of the accelerating

mode, then h̃ = −2πeV/λrf sin(2π/λrfqφ).

The collective component of this kick map can potentially introduce an energy

modulation due to an initial modulation of the spatial density.

2.2. The (short) Magnetic Chicane Part D

We assume that the chicane is short compared to the linac. We therefore neglect

LSC inside the chicane. Furthermore we neglect here all synchrotron radiation

effects, i.p. CSR. Then the transfer map through the chicane is a (generalized‡)

drift map:
(

q

p

)

7→
(

q + λ(p)

p

)

. (8)

It follows that the p-density is frozen inside the chicane within the limits of our

model.

Ψf(q, p) = Ψi(q − λ(p), p) . (9)

‡not a physical free space drift, but a map that only changes q as a function of p
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Here

λ(p) := Ld p+O(p2) , Ld :=
R56

Eref
, (10)

where Eref is the reference energy position of the chicane (downstream of our accel-

erating linac Eref = Ef). With an initially unchirped beam, an upstream linac with

absolute rf-chirp h̃ < 0, final energy Ef , the (relative) beam chirp at the entrance

of the chicane is h := h̃/Ef and the beam is compressed by a factor

C := (1 + hR56)
−1 = (1 + h̃Ld)

−1 . (11)

The drift map through the magnetic chicane can potentially introduce a modula-

tion of the spatial density due to an initial energy modulation. Thus the interplay of

LSC and the dispersive chicane modifies an initial spatial density modulation. The

amplitudes of some Fourier components may be amplified while others are damped.

As we will see, at higher order potentially harmonics of the incoming oscillations are

generated. Micro-bunching is the amplification of small initial modulations (and/or

the generation of new harmonics) through successive bunch compressor stages.

3. A suitable Perturbation Theory for Time-Discrete Vlasov

Systems

We now want to establish the mathematical framework for setting up a suitable

perturbation theory for a time-discrete Vlasov evolution. Although this is beyond

the scope of this paper, we finally want to arrive at a theory that allows for spec-

ifying rigorous error bounds. Therefore it is probably helpful to chose a proper

mathematical framework right from the beginning.

3.1. The Perron Frobenius Operator

Let ~M : R2 → R
2 be a measure preserving and invertible (here in fact: symplectic),

and sufficiently smooth map with smooth inverse. In other words, ~M is a symplectic

diffeomorphism of class Cm, ~M ∈ Symp(R2)∩Cm(R2), for some m > 0. Moreover,

let Ψ : R2 → R in some Banach space of absolute Lebesgue integrable functions

W(R2,R). At this stage W could be just L1 but later we might need some (weak)

smoothness, e.g. Ψ ∈ W1
m for some m > 0, where W1

m ⊂ L1 is the Sobolev space

of m-times weakly differentiable absolute integrable functions. We will require a

certain minimal m to ensure that certain terms in our n-th order perturbation

theory make sense (as it will turn out: m = n), but we might still require larger

m > n for error bounds later! We want to mention here that this model is not very

likely to ab applicable to strongly “curled up” reference bunches as they sometimes

appear in FELs. Thus numerics capable of describing exotic FEL type PSDs are

needed. See Ph. Amstutz’s contribution6!

Since ~M is measure preserving, and chosen sufficiently smooth, the composi-

tion Ψ ◦ ~M−1 is also in W(R2,R), and thus we may define for every such ~M the
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corresponding Perron Frobenius Operator 7,8

M : W(R2,R) → W(R2,R) ,Ψ 7→ MΨ := Ψ ◦ ~M−1 . (12)

One can easily convince oneself that M is a linear operator:

M (µΨ+ νΦ) = µMΨ+ νMΦ , ∀ Ψ,Φ ∈ W & µ, ν ∈ R . (13)

Here have introduced the abbreviation W meaning W(R2,R). Now we write M ∈
lin(W ,W) to denote that M belongs to the set of linear operators from W to W .

MΨ describes the Liouville evolution of Ψ through ~M .

M[Ψ]Ψ describes the (self-consistent) Vlasov evolution of Ψ through ~M [Ψ] which

in turn depends (in a functional way) on Ψ.

We want to make a point here that M[Ψ] is not linear in Ψ. However, if ~M [Ψ]

is sufficiently regular in its functional dependence on Ψ, we might hope to be able

to linearize M[·] around any given Ψ0.

3.2. The Total (Frechet) Derivative

Let ‖ · ‖op be a suitable operator norm on lin(W ,W). If a linear operator M′[Ψ0] ∈
lin(W , lin(W ,W)) exists, so that M[Ψ0+φ] = M[Ψ0] +M′[Ψ0] ·φ+ o(φ), in other

words:

lim
φ→0

‖M[Ψ0 + φ]−M[Ψ0]−M′[Ψ0] · φ‖op
‖φ‖W

= 0 ,

then M′[Ψ0] is called the generalized total (Frechet) derivative9 of M[·] : W →
lin(W ,W), Ψ 7→ M[Ψ] at Ψ0.

Here and in the following we use a · to bind the function φ to the linear operator

M′[Ψ0] which yields another linear operator (a new Perron-Frobenius operator) to

be applied to other functions without the ·. We hope that this makes expressions

like (M′[Ψ0] · φ)Φ0 (and similar) appear less obscure!

Higher order Frechet derivatives can be defined in an analog way, e.g. M′′[Ψ0] ∈
lin(W , lin(W , lin(W ,W))), with M′[Ψ0 + φ] = M′[Ψ0] +M′′[Ψ0] · φ+ o(φ), etc.

4. The Linearized Vlasov Evolution for One BC Stage

We start with a bunch compression stage with transfer map

~M [Ψ] = ~D ◦ ~Kcav ◦ ~Kpoi[Ψ] =: ~L ◦ ~Kpoi[Ψ] , (14)

where ~L := ~D ◦ ~Kcav combines the non-collective (lattice) part of the transfer map,

and a weakly smooth reference bunch PSD Ψ0 ∈ W1
1 , mapped by the BC stage to

Ψ1 := M[Ψ0]Ψ0 . (15)
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Then the linearized Vlasov Evolution of a perturbation φ0 ∈ W1
1 along with the

unperturbed evolution Ψ0 → Ψ1 reads

M[Ψ0 + εφ0] (Ψ0 + εφ0)

= M[Ψ0] Ψ0 + ε
(

M[Ψ0]φ0 + (M′[Ψ0] · φ0) Ψ0

)

+O(ε2) (16)

=: Ψ1 + εφ1 +O(ε2) . (17)

We note that because of the linearity of the Poisson equation, ~Kpoi[Ψ + Φ] =
~Kpoi[Ψ] ◦ ~Kpoi[Φ] = ~Kpoi[Φ] ◦ ~Kpoi[Ψ] and also ~Kpoi[Ψ + Φ]−1 = ~Kpoi[Ψ]−1 ◦
~Kpoi[Φ]

−1 = ~Kpoi[Φ]
−1 ◦ ~Kpoi[Ψ]−1. Before we proceed we introduce the follow-

ing abbreviations:

Q(~z ≡ (q, p)) := q ≡ (~z)1 , (18)

QL(~z) := Q(~L−1(~z)) ≡ (~L−1(~z))1 & PL(~z) := (~L−1(~z))2 . (19)

The O(ε) term of Eq. (16) has two contributions. The first is M[Ψ0]φ0. It

arises because of the linearity of M[Ψ0] and has no perturbative nature. The

second contains the Frechet derivative of M[·] at Ψ0 and can be computed via

M[Ψ0 + εφ0] Ψ0

= Ψ0 ◦ ~Kpoi[Ψ0 + εφ0]
−1 ◦ ~L−1

= Ψ0

(

QL, PL − kpoi[Ψ0](QL)− εkpoi[φ0](QL)
)

(20)

= Ψ0

(

QL, PL − kpoi[Ψ0](QL)
)

− ε∂pΨ0

∣

∣

QL,PL−kpoi[Ψ0](QL)
· kpoi[φ0](QL) +O(ε2) . (21)

We note that up to Eq. (20) no approximations have been made at all. Equation

(21) is the first order Taylor polynomial of Ψ0 w.r.t. p around ~M [Ψ0]
−1(~z). The

upper term in Eq. (21) is just Ψ1 = M[Ψ0]Ψ0. The O(ǫ) part of the lower term is

(M′[Ψ0] · φ0) Ψ0, i.e. the action of the linearized PF operator on Ψ0. Now finally

the linearly evolved perturbation φ1 is given by

φ1(~z) = φ0
(

QL(~z), PL(~z)− kpoi[Ψ0](QL(~z))
)

− ∂2Ψ0

(

QL(~z), PL(~z)− kpoi[Ψ0](QL(~z))
)

· kpoi[φ0](QL(~z)) , (22)

where and ∂2 means partial derivative w.r.t. the 2nd component p. This can be

rephrased in slightly more general form

φ1 = φ0 ◦ ~M [Ψ0]
−1 − ∂2Ψ0 ◦ ~M [Ψ0]

−1 · kpoi[φ0] ◦Q ◦ ~L−1 . (23)

One easily identifies

(M′[Ψ0] · f) : g 7→ −∂2g ◦ ~M [Ψ0]
−1 · (Kpoif) ◦Q ◦ ~L−1 (24)

with f, g ∈ W1
1 is the linearization of M[·] around Ψ0 at some deviation f . The

actual Frechet derivative M′[Ψ0] is the linear function that maps every f into

(M′[Ψ0] · f). We note that no explicit knowledge of the unperturbed Ψ1 is needed

for the single stage linear Vlasov evolution!
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If one restricts ~D and ~Kcav to linear functions, so that ~L(~z) = L~z, with

L ≡ DKcav :=

(

C−1 Ld

h̃ 1

)

, (25)

Q1
L(~z) ≡ Q

L
~z := (L−1~z)1 = q − Ldp , (26)

P 1
L(~z) ≡ PL~z := (L−1~z)2 = −h̃q + p/C , (27)

then one finds for a model with linear “RF-cavities” and a chicane with purely

linear longitudinal dispersion

φ1(~z) = φ0
(

Q
L
~z, PL~z − kpoi[Ψ0](QL

~z)
)

− ∂2Ψ0

(

Q
L
~z, PL~z − kpoi[Ψ0](QL

~z)
)

· kpoi[φ0](QL
~z) . (28)

5. nth Order Pert. Expansion

Now let Ψ0, φ0 ∈ W1
n. Extending Eq. (20) to nth order yields

M[Ψ0 + εφ0] Ψ0

= Ψ0

(

QL, PL − kpoi[Ψ0](QL)
)

n
∑

k=1

(−ε)k
k!

∂kpΨ0

∣

∣

QL,PL−kpoi[Ψ0](QL)
·
(

kpoi[φ0](QL)
)k

+O(εn+1) . (29)

At each order > 0 we obtain an additional term from expanding

M[Ψ0 + εφ0] εφ0

= εφ0
(

QL, PL − kpoi[Ψ0](QL)
)

−
n−1
∑

k=1

(−ε)k+1

k!
∂kpφ0

∣

∣

QL,PL−kpoi[Ψ0](QL)
·
(

kpoi[φ0](QL)
)k

+O(εn+1) . (30)

Thus we obtain at order n:

M[Ψ0 + εφ0] (Ψ0 + εφ0) = Ψ1 +

n
∑

k=1

εkφ1,k +O(εn+1) (31)

φ1,k :=
(−1)k

k!
∂k2Ψ0 ◦ ~M [Ψ0]

−1 · (kpoi[φ0] ◦QL)
k

+
(−1)k−1

(k − 1)!
∂k−1
2 φ0 ◦ ~M [Ψ0]

−1 · (kpoi[φ0] ◦QL)
k−1 . (32)

In particular we have φ1,1 ≡ φ1 (as in Sec. 4), and

φ1,2(~z) =
1

2
∂22Ψ0

(

QL(~z), PL(~z)− kpoi[Ψ0](QL(~z))
)

·
(

kpoi[φ0](QL(~z))
)2

− ∂12φ0
(

QL(~z), PL(~z)− kpoi[Ψ0](QL(~z))
)

·
(

kpoi[φ0](QL(~z))
)1
. (33)

Note that the lowest order “self modulation” term of φ0, namely ∂2φ0 ◦ ~M [Ψ0]
−1 ·

kpoi[φ0] ◦ QL only enters at 2nd order! We note that no explicit knowledge of the

unperturbed Ψ1 is needed for the single stage n-th order Vlasov evolution!
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6. Cascade of several BC Stages

We want to describe several stages truncated at order n. The first stage M1 maps

Ψ0+εφ0,1 into Ψ1+
∑n

i=1 ε
iφ1,i+O(ε

n+1). The second stage M2 already gets Ψ1+
∑n

i=1 ε
iφ1,i as input and maps it into Ψ2 +

∑n
i=1 ε

iφ2,i +O(εn+1). More generally:

the m + 1-st stage Mm+1 maps Ψm +
∑n

i=1 ε
iφm,i into Ψm+1 +

∑n
i=1 ε

iφm+1,i +

O(εn+1).

For convenience we will omit the stage-index in the map-like entities (M, ~L,
~Kpoi, QL, PL, etc.), and write

∑n
i=0 ψm,i for Ψm +

∑n
i=1 φm,i. The the m + 1-st

stage evolves

M
[

n
∑

i=0

εiψm,i

](

n
∑

l=0

εlψm,l

)

=

n
∑

i=0

εiψm,i

(

QL, PL −
n
∑

l=0

εlkpoi[ψm,l](QL)

)

(34)

=

n
∑

i=0

εiψm,i

(

QL, PL − kpoi[ψm,0](QL)−
n
∑

l=1

εlkpoi[ψm,l](QL)

)

=

n
∑

i=0

εi
n−1
∑

j=0

(−1)j

j!
∂j2ψm,i

(

QL, PL−kpoi[ψm,0](QL)
)

·

·





(n−i)//j
∑

l=1

εlkpoi[ψm,l](QL)





j

+O(εn+1) (35)

=

n
∑

i=0

εi
n−i
∑

j=0

(−1)j

j!
∂j2ψm,i

(

~M [ψm,0]
−1
)

·





(n−i)//j
∑

l=1

εlkpoi[ψm,l](QL)





j

+O(εn+1) . (36)

Eq. (34) is again exact for truncated input and Eqs. (35) and (36) allow itera-

tion along a cascade of several bunch compressor stages. In the latter two equa-

tions the upper sum-limit (n − i)//j is defined as (n − i)/j iff j 6= 0 and as 0

otherwise. Note that j = 0 implies that the sum over l is taken to the zeroth

power. For Example with n = 2 and m = 2 we find ψ2,0 = M1[ψ1,0]ψ1,0 =

M1[M0[ψ0,0]ψ0,0] M0[ψ0,0] ψ0,0, and

ψ2,1 = ψ1,1

(

QL1, PL1 − k1[ψ1,0](QL1)
)

− ∂2ψ1,0

(

QL1, PL1 − k1[ψ1,0](QL1)
)

· k1[ψ1,1](QL1) , (37)

where ψ1,0 = M0[ψ0,0] ψ0,0 and

ψ1,1 = ψ0,1

(

QL0, PL0 − k0[ψ0,0](QL0)
)

− ∂2ψ0,0

(

QL0, PL0 − k0[ψ0,0](QL0)
)

· k0[ψ0,1](QL0) , (38)
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(analogously to Eq. (22)), and

ψ2,2 = ψ1,2

(

QL1, PL1 − k1[ψ1,0](QL1)
)

− ∂2ψ1,1

(

QL1, PL1 − k1[ψ1,0](QL1)
)

· k1[ψ1,1](QL1)

+
1

2
∂22ψ1,0

(

QL1, PL1 − k1[ψ1,0](QL1)
)

· k1[ψ1,1](QL1)

− ∂2ψ1,1

(

QL1, PL1 − k1[ψ1,0](QL1)
)

· k1[ψ1,2](QL1) , (39)

where ψ1,2 is given in analogy to Eq. (33) by

ψ1,2 =
1

2
∂22ψ0,0

(

QL0, PL0 − k0[ψ0,0](QL)
)

·
(

k0[ψ0,1](QL0)
)2

− ∂12ψ0,1

(

QL0, PL0 − k0[ψ0,0](QL)
)

·
(

k0[ψ0,1](QL0)
)

. (40)

We note that no explicit knowledge of the unperturbed Ψm+1 is needed for the

multi-stage n-th order Vlasov evolution!

7. Gain Functions

To study the properties of and the potential damage due to micro-bunching in multi-

stage bunch compression lattices, so called gain functions have been introduced.

They are typically based on the quotients of power spectra taken at compression-

corrected wavelengths. We will pursue here a similar though slightly more general

concept: Starting from a cascade of m bunch compressors ~M1,. . . , ~Mm, a given un-

perturbed PSD Ψ0, all sufficiently regular so that the sequence Ψ0 7→ . . . 7→ Ψm can

all be computed, and an initial O(ε) perturbation φ0 ≡ ψ0,1 with projected spatial

density ρ0,1(q) and Fourier transform ρ̂0,1(κ), one may define the most general n-th

order m-stage (amplitude-) gain function:

g(n,m)[Ψ0, ~M0, · · · , ~Mm;φ0](κi, κf) :=
ρ̂m,n(κf)

ρ̂0,1(κi)
. (41)

In addition one may define the accumulated (over all orders ≤ n) m-stage

(amplitude-) gain function:

Γ(n,m)[Ψ0, ~M0, · · · , ~Mm;φ0](κi, κf) :=
n
∑

k=1

g(k,m)[. . .](κi, κf) . (42)

If the chirp of the reference PSDs (Ψ0, . . . ,Ψm−1) does only vary weakly over the

bunchlength, and if generation of harmonics is neglected, it is often convenient to

define the compression corrected, absolute (power spectral) gain:

g̃(n,m)[Ψ0, ~M0, · · · , ~Mm;φ0](κ) :=
∣

∣g(n,m)[. . .](κ, κ · (C0 · · ·Cm))
∣

∣

2
(43)

Γ̃(n,m)[Ψ0, ~M0, · · · , ~Mm;φ0](κ) :=
∣

∣Γ(n,m)[. . .](κ, κ · (C0 · · ·Cm))
∣

∣

2
. (44)
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8. A First Example: Infinitely Long Bunch

In this section we will very briefly touch the example of an “infinitely” long bunch.

We define ξµ,σ(x) := (σ
√
2π)−1 exp(−(x−µ)2/2/σ2) as a Gaussian with expectation

µ and variance σ2, and Λt(x) := 1/(2t + δ), δ ≪ 2t over the interval [−t, t] and
Λt(x) = 0 for |x| ≫ t. We assume Λ is sufficiently smooth, but with “infinitely

long” we mean that we ignore all edge effects. Our initial unperturbed PSD is

Ψ0(q, p) ≡ ψ0,0(q, p) = Λt0(q)ξµ0(q),σ0
(p) . (45)

We start at the reference energy E0 and with no initial chirp dµ/dq, so that µ0(q) ≡
0. We assume σ0 = const. > 0 and σ0/E0 ≪ (κt0)

−1 for all wavenumbers κ under

study. Moreover we assume that the bunch has a characteristic transverse size

a ≪ t0. Then ρ0,0(q) = Λt0(q) and furthermore kpoi[Ψ0] ≈ 0 deep enough inside

the bunch and for any decent 〈Gpoi〉. We set ~D, ~Kcav linear, Ld > 0, h̃ < 0,

so that L describes a linear bunch compressor with compression C > 1. Then

Ψ1(~z) ≡ ψ1,0(~z) = Λt1(q)ξµ1(q),σ1
(p) ≈ Ψ0(QL

~z, PL~z), i.p. µ1(q) = h̃q, t1 ≈ t0/C.

Now set the initial perturbation

φ0(q, p) ≡ ψ0,1(q, p) = ηψ0,0(q, p) cos(κiq) , (46)

with 0 ≤ η < 1, so that Ψ0 + φ0 ≥ 0 and
∫

R2(Ψ0+φ0) dqdp ≈ 1 for κit0 ≫ 1. With

this perturbation,

ρ0,1(q) = ηΛt0(q) cos(κiq) . (47)

In order to proceed we need a model for the LSC impedance6. Here we choose

the mean force on a charged a-disk due to a charged a-disk: Ĝpoi(κ) ∝ ia2

κ

(

1 −
2I1(|κ|a)K1(|κ|a)

)

, but more ways to model the influence of the transverse beam

shape exist6. Now we can compute the kick function for values of |q| ≪ t0, i.e. deep

inside the bunch:

kpoi[φ0](q) =
η

2t0
ℑĜpoi(κi) sin(κiq) . (48)

If we now choose n = 2 (and m = 1), and define Ĝi := ℑĜpoi(κi), we find for our

single stage bunch compressor

ψ1,1 ≈ −∂2ψ0,0(Q
1
L, P

1
L) ·

η

2t0
Ĝi sin(κiQ

1
L)

+ ψ0,1(Q
1
L, P

1
L) (49)

ψ1,2 ≈ 1

2
∂22ψ0,0(Q

1
L, P

1
L) ·

( η

2t0
Ĝi sin(κiQ

1
L)
)2

− ∂2ψ0,1(Q
1
L, P

1
L) ·

η

2t0
Ĝi sin(κiQ

1
L) (50)

Note that since ξ′µ,σ(p) = − p−µ
σ2 ξµ,σ(p) and ξ′′µ,σ(p) =

( (p−µ)2

σ4 − 1
σ2

)

ξµ,σ(p), all

functions above can be evaluated explicitly.



December 22, 2017 12:49 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in MVogt˙PertVlasov page 12

12

Now let the chirp h̃ be so weak, that the compression C = 1/(1 + h̃Ld) ≈ 1,

despite finite Ld. Then P 1
L(q, p) ≈ p, and since Λt0(q) is constant well inside the

bunch, the projections ψ ◦ ~L→ ρ can be performed

ρ1,1(q) ≈
η

t0
cos(κiq)

∫ ∞

0

ξ0,σ(p) cos(κiLdp) dp

− ηĜi

2t20
cos(κiq)

∫ ∞

0

p

σ2
ξ0,σ(p) sin(κiLdp) dp (51)

since ξ′0,σ(p) is odd, and

ρ1,2(q) ≈
η2Ĝ2

i

16t30
cos(2κiq)

∫ ∞

0

(

p2

σ4
− 1

σ2

)

ξ0,σ(p) cos(2κiLdp) dp

− η2Ĝi

4t20
cos(2κiq)

∫ ∞

0

p

σ2
ξ0,σ(p) sin(κiLdp) dp (52)

since ξ′′0,σ(p) is even. The integral
∫∞

0 cos(2κiLdp)ξ0,σ(p) can be found in10, the

other two can be derived from there using integration by parts. Thus we find

ρ1,1(q) ≈
η

2t0
exp

(

−1

2
κ2i L

2
dσ

2

)

(

1− ĜiκiLd

2t0

)

cos(κiq) , (53)

and

ρ1,2(q) ≈
η2ĜiκiLd

2t20
exp

(

−2κ2i L
2
dσ

2
)

(

ĜiκiLd

2t0
− 1

)

cos(2κiq) . (54)

The gain functions are easily computed since the only q-dependence (neglecting

the edge effects) is in the cos-terms of argument κiq and 2κiq for first an second order

contributions respectively. We want to mention here that already for a single stage

bunch compressor and up to only 2nd order we drive a 2nd harmonic (κi → 2κi).

The usual compression corrected gain, even at 2nd order Γ̃(2,1)(κ) cannot capture

this.

This is still work in progress and we apologize this incompletely worked out

example. The original poster contained some bugs which we hope to have removed

in this contribution. There is more interesting work to do and more publications to

come!
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